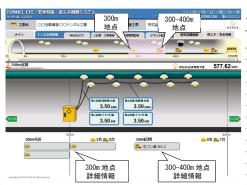

山岳トンネル工事では、施工機械、換気ファンなどの多くの電気機器を用いるため、省エネルギー化が求められます。

TUNNEL EYEは、トンネル内にIoTのネットワークを構築して、入坑者位置や作業環境濃度を常時監視するとともに、作業状態を把握できるように施工機械の電力量などの情報を計測・分析し、換気ファン等を自動で省エネ制御するエネルギーマネジメントシステムです。


※TUNNEL EYEは、株式会社 イー・アイ・ソル と株式会社 流機エンジニアリングとの共同開発品です。

TUNNEL EYEの仕組み

トンネル内に複数の組込型制御端末を配置して、入坑者と工事車両の位置や、作業環境濃度、施工機械の電流値などの情報をセンシングし、インターネット経由で、遠隔地域のサーバーで保存、分析して、安全の「見える化」や、換気ファン等を作業工程に応じて省エネ制御します。

電気機器稼働・入坑・作業環境情報

入坑者・工事車両の位置情報

L	作業工程判断による目動制御の一部(例)					
	CASE	作業工程(施工サイクル)	照明 パターン	換気 パターン		
	1	寛月, 装蔥, ロックボルト, 支保工組立	int /rT	任油		

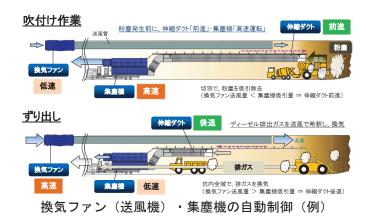
	穿孔・装薬・ロックボルト・支保工組立		111	111
1			減灯	低速
2	発破・こそく・インバート施工		全灯	中速
3	ずり出し		全灯	中速
4	吹付		減灯	高速
5	作業中断		減灯	低速
6	吹付	ドリルジャンボ 整備中	減灯	高速
7	ずり出し		全灯	中速
8	作業無し		減灯	低速
9	穿孔・装薬・ロックボルト	吹付機整備中	減灯	低速
10	発破		全灯	中速
11	作業中断		減灯	低速
12	作業中断 ドリルジャンボ	減灯	低速	

TUNNEL EYEの機能

1. 入坑管理

RFIDタグを携帯した入坑者を、坑内に設置した リーダーで自動検知し、トンネル内への入坑状態 と位置情報をWeb上に表示します。

2. 作業環境管理


定置式濃度計を用いて温度、湿度、 CO_2 、CO、 O_2 、 CH_4 、粉塵、風速等をリアルタイムで測定し、測定値をWeb上に表示します。

トンネル坑内の CO_2 濃度を分析し、坑内で稼働する重機や車両の排ガスに含まれる CO_2 排出量を管理します。

作業環境の管理値を超える場合は、メールやパトライトで警告します。

3. 省工ネ制御

センシング情報を分析・判断し、工事照明や換 気ファン、集塵機、伸縮ダクト等を作業工程に適し た状態に自動制御します。

8.000 累計総排出量 1,234.7 t-CO2 電力由来排出量 燃料由来排出量 4.000 4.000 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 日 切羽重機 7 9 11 13 15 17 19 21 23 25 27 29 31

CO₂排出量の管理画面

適用事例

【適用現場】

工事名:新伊勢神トンネル工事

発注者: 国土交通省 中部地方整備局

実施内容:

- ①入坑管理(入坑者:工事車両)
- ②作業環境管理
- ③省エネ制御(換気ファン・集塵機)
- ④作業環境改善(伸縮ダクトの自動制御)
- ⑤作業工程のサイネージ表示

坑口に設置したデジタルサイネージ

現場では、TUNNEL EYEにより自動判別した作業工程や入坑者情報をデジタルサイネージに表示することで、トンネル内での作業状況を坑外からも確認できるようにして、安全性の向上を図りました。

省エネ効果

換気設備の自動制御により、計画電力量に対して平均23.8%の消費電力量の削減が図れました。

換気ファン

集塵機

現場での消費電力量